
ABSTRACT: This paper presents a kernel extreme learning machine (KELM)-based nonlinear 
data-driven model for the dam behavior (i.e., radial displacement and seepage) prediction, where 
the model hyperparameters are determined using particle swarm algorithm (PSO) and internal 
cross-validation to overcome overfitting. The model inputs are composed of the reservoir water 
height, measured temperature, rainfall, and time-related variables. The global sensitivity analysis 
coupled with the KELM model is proposed for the model interpretation. The warning thresholds 
of the arch dam radial displacement and seepage can be determined via the residuals of training 
samples and the confidence interval method. 
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1 INTRODUCTION 

Concrete dams play important roles in the social and economic fields by flood control, power 
generation, water supply, and irrigation. During the service period, dams are subjected to a variety 
of operational and environmental loads and occasionally encounter some unconventional events 
or extreme loads (such as excessive flooding, droughts, earthquakes, etc.). Moreover, the overall 
performance of the concrete structures may decrease over time due to age-related deterioration, 
hydraulic erosion, and other factors. If a dam is not well managed and maintained, failures may 
occur, leading to economic and life losses in reservoir regions. 

The displacement and seepage are two critical indicators that can intuitively reflect the opera-
tional status of a dam. With the rapid development of artificial intelligence (AI) since the end of 
the past century, there has been growing interest in adopting machine learning (ML) methods in 
dam engineering. Many ML methods have been adopted for dam behavior prediction and moni-
toring, such as auto-associative neural networks (Kao et al., 2013), support vector regression 
(Rankovic et al., 2014), boosted regression trees (Salazar et al., 2015), random forest (Belmokre 
et al., 2019; X. Li et al., 2019), Gaussian process regression (Lin et al., 2019), and long short-term 
memory network (Liu et al., 2020). 

This study establishes a kernel extreme learning machine (KELM)-based nonlinear data-driven 
model to predict the dam displacement and seepage. The model hyperparameters are optimized 
using a particle swarm algorithm (PSO) and cross-validation. To mine the influencing factors of 
model inputs and provide support for decision-making, the global sensitivity analysis coupled 
with the KELM model is implemented for the model interpretation. The warning thresholds of 
the dam radial displacement and seepage are determined using the confidence interval method. 

The rest of the paper is summarized as follows: Section 2 describes the statistical model of dam 
behavior and inputs. The theory of the KELM prediction model, warning thresholds of dam be-
havior, and model interpretation method are then introduced in Section 3. Results and discussion 
are presented in Section 4. Finally, Section 5 summarizes the findings. 

2 STATISTICAL MODEL OF DAM BEHAVIOR  

2.1 Statistical model of dam displacement 

Displacement (denoted by  ) is a key indicator for evaluation of the dam behavior. In general, 
the displacements of the arch dam are assumed to be dependent on hydrostatic load, temperature, 
and time, which can be quantitatively interpreted and approximated as: 

H T         (1) 

where H , T , and   represents the hydrostatic component, temperature component and time 
component, respectively. 

Under the action of water pressure, hydrostatic component H  can be described by a polyno-
mial function consisting of reservoir water height H  and coefficients  ( 0 ~ 4)ia i  (Mata, 2011): 
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Temperature component T  describes the displacement caused by the temperature changes in 
bedrock and dam concrete. The temperature variation of the dam is mainly influenced by changes 
of air temperature. Meanwhile, there is a hysteresis effect between the air temperature and the 
dam internal temperature. Therefore, if the air temperatures are available and continuous, the 
temperature component T  can be quantitatively represented by a polynomial function consisting 
of segmented air temperature A BT  (Kang et al., 2019), as: 
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where A BT   denotes the average ambient temperatures A  to B  days before the day of observa-
tion,  ( 1~ 6)ib i   are coefficients. In this paper, 0T , 1 2T  , 3 7T  , 8 15T  , 16 30T  , and 31 60T   are selected 
as the temperature factors. It is noted that 0T  represents the temperature of the observation day. 



Time component   reflects the irreversible deformation of the dam body or dam foundation 
toward a certain direction over time. According to the previous research (Lin et al., 2019; Y. Q. 
Shi et al., 2018), different and strictly monotone functions can be used for modeling the time 
component  , as: 
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where 100t  , and t  denotes number of days since the beginning of the analysis, 1c , 2c , and 

3c  are coefficients. 
Thus, the statistical model of arch dam displacement contains the 14 input factors, and the 

expression is as follows: 
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2.2 Statistical model of dam seepage 

Excluding the hydrostatic load, temperature and time effects, the seepage (denoted by S ) of the 
arch dam is also dependent on the rainfall effect, and the seepage response can be quantitatively 
interpreted and approximated by the following equation: 

H T RS S S S S      (6) 

where HS , TS , and S  represent the hydrostatic component, temperature component, and time 
component, respectively, sharing the same form as shown in Equation (2)~(4). RS  denotes the 
rainfall component. Considering the lag effect between the rainfall and the external seepage 
changes, a polynomial function consisting of segmented rainfall factors A BR   are utilized to sim-
ulate the rainfall component: 

1

i A B

m

i

RS d R 



   (7) 

where A BR   denotes the average rainfall A  to B  days before the response day of the observa-
tion. In this paper, 0R , 1 2R  , 3 7R  , 8 15R  , 16 30R  , and 31 60R   are selected as the segmented rainfall 
factors, where 0R  denotes the rainfall of the observation day. 

Thus, the statistical model of arch dam seepage contains the 20 input factors, and the expression 
is as follows: 
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3 METHODOLOGY OF DAM BEHAVIOR PREDICTION AND WARNING   

3.1 Optimized kernel extreme learning machine 

Extreme learning machine (ELM) is an extension algorithm of the single layer feedforward net-
work (SLFN) that can be used for regression, classification, and clustering (Huang et al., 2006). 
As opposed to the traditional artificial neural network based on gradient descent learning algo-
rithm, ELM has a stochastic nature. It randomly assigns the input weights and the hidden layer 
biases, and then keep them fixed without iteratively tuning. In recent years, a novel variant of 
ELM called kernel extreme learning machine (KELM) has been proposed by (Huang et al., 2012), 
which integrates the advantages of ELM and kernel trick. The KELM was shown to achieve a 
better prediction performance and stability than prototype ELM with less computational cost 
(Ding et al., 2013). 

The output of the ELM for generalized SLFNs can be written as 
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where ia  denotes the weight vector linking i th hidden node and the input nodes; iβ  presents the 
weight vector connecting j th hidden node and the output nodes; ib  is the threshold of i th hidden 
node. h  refers to the activation functions. 

The training goal is to find the best output weight β , which can be computed by the least square 
method: 

†β H T   (10) 

where †
H  denotes the Moore-Penrose (MP) generalized inverse of the hidden layer output, and 
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Nt t tT  presents the target vector. 
For complex prediction task, hidden layer feature mapping is typically unknown. Thus, the 

kernel function is introduced to replace the feature mapping function. On the basis of the orthog-
onal projection method, the MP generalized inverse matrix †

H  can be calculated by 
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H H HH , and the output weight   can be computed by adding a positive constant, 1/ C . 
Therefore, the output function of KELM can be briefly described given by 
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where  ,iK x x  is the kernel function and should satisfy the Mercer condition. In this study, 
Gaussian kernel is used in the form of  

2 2, exp( / 2 )i iK x x x x    . Therefore, the main parameters 
of KELM herein are regularization parameter C , and kernel parameters  . 

The performance of the KELM model is controlled by hyperparameters C  and  . To make 
sure the model brings good generalization and robust performance, particle swarm optimizer 
(PSO) (Y. H. Shi et al., 1998) was combined with 3-fold cross-validation to determine the optimal 
parameters. In 3-fold cross-validation, the training data is divided into an internal validation set 
and an internal training set. For the PSO algorithm, the population size is set to 20, and the max-
imal iteration is set to 20 as the stopping criteria. In each iteration, P  is the dimensions of the 
hyperparameters to be optimized, the position vector 1 2, , , P

i i i ix x x   X  and the velocity vector 
1 2, , , P

i i i iv v v   V  are updated once by the following equations: 
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where 1c  and 2c  are two acceleration coefficients with the values are set as 2.0. 1

Prand  and 

2

Prand  denote the two random numbers generated independently within [0, 1]. P

ipbest denotes the 
position with the best-known fitness of the i th particle, and Pnbest  represents the best global po-
sition in P

ipbest .  
In each iteration, the error function of PSO is evaluated by mean squared error of prediction 

( cv,kMSEP ), as shown in Equation (13): 
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where n  represents the number of samples, K  represents the number of folds. ˆ
iy  is the pre-

dicted value of the internal validation samples, iy  is the measured value of the internal validation 
samples.  

3.2 Warning thresholds of dam behavior 

The confidence interval method (B. Li et al., 2019) is used for dam behavior monitoring and 
determine the warning thresholds. If the measured value falls within the interval range, it is re-
garded as a safe value. Otherwise, it is regarded as anomalous and may raise alarm. The expres-
sion of the confidence interval ( CI ) is given in Equation (14): 
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where ŷ  represents the fitted or predicted value of dam behavior,   is the standard deviation, 

tN  represents the number of the training samples. ˆ( )i i ie y y , where e  is the mean value of ie , 

iy  is the measured value of dam behavior, and ˆ
iy  is the fitted value of dam behavior.  

It is noted that abnormal values may not be identified if the confidence interval is relatively 
wide. In contrast, if the range is too narrow, many values may be deemed as abnormal mistakenly 
(Wu, 2003), thereby resulting in many false positives. In general, the effectiveness of confidence 
interval is influenced by the input selection, performance of the KELM model, and hyperparam-
eters tuning, which need to be determined with caution. Considering the dam status and risk level, 
the extreme case scenario is considered, the significance level is set as 1%, and therefore, 

2.58  . 

3.3 Global sensitivity analysis for model interpretation 

KELM predictive model contains the disadvantages of black box characteristics, and the trained 
date-driven model is typically difficult to be understood. Inspired by (Chen et al., 2020; Cortez et 
al., 2013) pioneer work, we combined global sensitivity analysis (GSA) with the PSO-KELM to 
interpretate the dam behavior prediction model. This method allows us to compute the relative 
importance of input variables or any group combination of them. The main idea of the GSA is to 
hold all input variables at given value except the specific variable to be computed, and then cal-
culate the output weight of the corresponding input by the available formula. The detailed proce-
dure of the GSA is described in Table 1, where m  and n  are the number of input attributes and 
samples, respectively.  is the number of subgroups (each subgroup contains at least one input 
attribute). ( )k

X  is the generated meta-inputs by holding all input variables at their mean values 
except k th attributes, and k  . ( )ˆ k

y  represents the obtained output via inputting the ( )k
X  to 

the trained model, and y  denotes the median value of the measured leakage ( 1)n
Y . In principle, 

the proposed GSA can be applied to any supervised machine learning algorithm for regression 
tasks. 
 
Table 1. Global sensitivity analysis for model interpretation. 
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4 RESULTS AND DISCUSSION 

4.1 Case study 

4.1.1 Brief introduction of dam project 
The case study of the benchmark is a double curvature arch dam called Dam_EDF, which is lo-
cated in the south of France. The dam was constructed between 1957 and 1960. The maximum 
dam height above the foundation is about 45m, with the crest length being 166 m. To monitor the 
dam service status, the dam is equipped with a comprehensive monitoring system and instruments. 
Figure 1 presents the illustrations of the dam project.  



 
 
Figure 1. Downstream view of Dam_EDF. 

4.1.2 Data collection 
In this benchmark, the radial dam displacement and seepage are used for analysis. For the radial 
dam displacement (unit is mm), the measurements of pendulums on the Central Block (CB) are 
provided for analysis, where CB2 is the radial displacement between the altitudes 236 m (dam 
crest) and 196 m (dam toe), while CB3 is the radial displacement in the foundation between the altitudes 

195 m and 161 m. For the seepage (unit is L.min-1), the flowrate is measured using a weir located in the 

gallery at the downstream dam toe. The time series of dam behavior data are provided from 2000 to 
2012. 

The corresponding ambient data includes the water level, temperature, and rainfall (see Figure 
2 ~ Figure 4). The water level of the reservoir is collected per day. Since Dam_EDF is located on 
the top of a glacial threshold, the reservoir water height is 0 once the water level is lower than 
+196 m. The air temperature is not measured at the dam location, therefore, the provided calcu-
lated temperature called ‘T_b’ is used herein for temperature factors generation. ‘T_b’ is calcu-
lated by interpolation from several air temperature measuring stations. The interpolation takes 
into account the altitude of the dam and is calculated on a mesh of 1 square kilometer. Daily 
rainfall precipitation is collected from a rain gauge located about 5 km from Dam_EDF. The time 
series of the ambient data is provided from 1995 to 2017. It is noted that the provided data of the 
benchmark is automatically checked, and there is no need for any further cleaning.  

 
 
Figure 2. Time series of the reservoir water height. 
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Figure 3. Time series of the T_b air temperature. 

 

 
Figure 4. Time series of the daily rainfall. 

 

4.2 Model calibration and prediction 

Based on the introduces in Section 2, the model input variables of dam displacement x  and 
seepage Sx  are shown as follows: 
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where the time component factors are generated.  
Prior to model implementation, all the inputs should be normalized within the range of [0,1] 

by Equation (17), where ix  is i th individual variable in input matrix x . 
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The measured radial displacement and seepage from 2000-01-19 to 2012-12-31 are utilized for 
model training and calibration, and the rest measured radial displacement from 2013-01-01 to 
2017-12-31 are utilized for validation of prediction performance. By implementing the method 
introduced in Section 3.1, the hyperparameters C  and   are tuned within the range of (0,1000] 
and (0,10], respectively. The obtained hyperparameters for KELM prediction model are listed in 
Table 2. The calibration and prediction results of CB2 displacement, CB3 displacement, and seep-
age are shown in Figure 5 ~ Figure 7, respectively.  

 



Table 2. The hyperparameters of PSO-KELM data-driven models. 
 
_____________________________________________________________________________ 

Hyperparameters  CB2 displacement  CB3 displacement Seepage ______________________________________________________________ 

C        748.529     165.711     34.467 

        3.453      0.650      0.591 
_____________________________________________________________________________ 

 

 
 
Figure 5. Performance of the PSO-KELM model for CB2 displacement simulation. (The number of training 
sample is 688) 

 

 
 
Figure 6. Performance of the PSO-KELM model for CB3 displacement simulation. (The number of training 
sample is 681) 
 

 
 
Figure 7. Performance of the PSO-KELM model for seepage simulation. (The number of training sample 
is 661) 

 



The calibration results of displacement and seepage are validated in terms of the mean absolute 
error and normalized root mean squared error (NRMSE), see Table 3. 
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where N  is the number of time stamps in the corresponding period, maxY  and minY are maximum 
and minimum measured value of dam behavior in the corresponding period, iY  denotes the meas-
ured value of dam behavior, and iP  denotes the simulated value of dam behavior. 

From the obtained results shown above, the PSO-KELM model provides satisfactory fitting 
performance of dam behavior. Most of the measured value are within the interval range except 
the very few measurements at the peak value. 

 
Table 3. The metrics of calibration results. 
_____________________________________________________________________________ 

Metrics   CB2 displacement   CB3 displacement  Seepage ______________________________________________________________ 

MAE      0.771       0.087       0.576 

NRMSE   0.023       0.015       0.035    
_____________________________________________________________________________ 

4.3 Model interpretation 

The relative importance of input factors via PSO-KELM model coupled with the GSA method is 
depicted in Figure 8, where the relative importance of dominated input variables in each compo-
nent is shown by the bar plot. It is found that the hydrostatic component plays a crucial role in the 
state of dam displacement and seepage, followed by the time component and temperature com-
ponent. However, the seepage of the dam is not sensitive to the rainfall variables, indicating that 
the rainfall component of the dam seepage is negligible. It must be explained with great caution 
that the results via the GSA herein are not able to assess what absolute extent each input accounts 
for dam behavior, but only the relative sensitivity degree of the dam behavior to each input vari-
able. 
 

 
 
Figure 8. Relative importance of input factors via PSO-KELM model coupled with GSA method: (a) CB2 
displacement, (b) CB3 displacement, (c) Seepage 



5 CONCLUSIONS 

In this paper, we proposed an interpretable PSO-KELM data-driven model for the prediction and 
monitoring of arch dam behavior (i.e., displacement and seepage). The effects of the reservoir 
water height, daily temperature, daily rainfall, and time were considered for inputs factors gener-
ation. By combing the PSO and 3-folds cross-validation with KELM, the hyperparameters were 
adaptively determined to guarantee the model generalization. Benefitting from the powerful non-
linear mapping and interpretable capability, the model provides satisfactory fitting performance 
and reasonable interpretations. It could be learned from the results that the hydrostatic component 
accounts most for the dam displacement and seepage, while the time component came second. 
The rainfall component of seepage was negligible. 
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