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ABSTRACT: In this paper, we present our submission to the ICOLD benchmark for the two
pendulum datasets (CB2 & CB3). Our approach relies on the ensembling of a Bayesian dynamic
linear model (BDLM) along with Bayesian long-short-term memory (LSTM) neural networks that
use the tractable approximate Gaussian inference method (TAGI) for learning its parameters. We
provide through our probabilistic ensembling method, the explainability of BDLMs as well as
the accuracy and ease of use of Bayesian LSTM. Although the benchmark focusses on prediction
accuracy and threshold value definition for the purpose of anomaly detection, one should keep in
mind that this way of envisioning anomaly detection is only one approach among many others.
We show in this paper that with our probabilistic regime switching method we expect to be able
to detect anomalies of 0.5 mm for CB2 and 0.15 mm for CB3, where both cases, anomalies can
develop over the span of years.

1 INTRODUCTION

Sensor-based structural health monitoring (SHM) is an established tool for informing dam owners
and managers about the occurence of abnormal events as well as the general condition of the
structure. Although it is a routine task to measure structural responses such as displacements,
inclinations, pressure or flow rates using commercial technologies, it is much harder to extract
information and knowledge from data. In the context of dam monitoring, the hydrostatic-seasonal-
time (HST) method (Salazar et al., 2017) is the most common approach in order to model the
dependency between structural responses and water level, seasonal components and time. The
HST method has passed the test of time, nevertheless, it has several limitations; (1) it has a limited
forecasting capacity when the relationship between the explanatory variables or their components
are non-linear, or affected by a phase shift; (2) it is an offline method, i.e., the model is built using
a training set so that it requires periodic retraining in order to adapt to new conditions not covered
during training. This affects the capacity to detect anomalies that are building up over years as
model re-training will capture a part of the anomaly in the model itself. The research community
is still figuring out what are the options in order to overcome these limitations. In this context, the
ICOLD workshop on dam behaviour prediction aims at comparing various methods with respect
to their predictive capacity, anomaly detection capacity and interpretability.

In this paper, we present our submission to the ICOLD benchmark for the two pendulum
datasets (CB2 & CB3). Our approach relies on the ensembling of a Bayesian dynamic linear
model (BDLM) (Gaudot et al., 2019) along with Bayesian long-short-term memory (LSTM) neu-
ral networks (Goodfellow et al., 2016) that rely on the tractable approximate Gaussian inference
method (TAGI) (Goulet et al., 2021) for learning its parameters. BDLMs enables non-linear de-
pendencies between model sub-components, is an online method capable of updating itself as new
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data comes in, is inherently probabilistic so that it can handle epistemic and aleatory uncertainties,
and it allows explaining the dependencies within the model. LSTMs excel at forecasting without
requiring feature engineering regarding the interactions between structural responses, explanatory
variables and other latent variables and its coupling with the TAGI method makes it inherently
probabilistic as well. Ensembling (Sagi & Rokach, 2018) is a common approach in order to ag-
gregate the predictions from several models with the objective of improving the accuracy through
the cancellation of the model errors in the case they are statistically independent.

The paper is organized as follow: Section 2, presents the dataset employed as well as the pre-
processing steps we applied on the data. Section 3 presents the methodologies behind the BDLM,
LSTM, and ensembling methods. Section 4 presents the results regarding validation, forecasting,
and model interpretation where we also investigate anomaly detectability.

2 DATASETS & PREPROCESSING

In this paper, we are building models for the pendulum time-series CB2 and CB3, measuring the
dam’s radial displacement [mm] from the bottom to crest, and foundation to bottom, respectively.
In order to model these time series, we rely on the reservoir water level [m] as well as the tem-
perature data TB [◦C]. The data acquisition for the displacements CB2/3 has been made with an
average frequency of 1.5 week, whereas the average frequency of the reservoir water level as well
as the temperature TB is daily. We use daily data in our models both in training and forecasting
which means that there are many missing data points in the CB2/CB3 displacement datasets.

For BDLM models, the water level data below 196m have been truncated to that value in order
to account for the physical constrain associated with the bottom of the dam. In addition, instead
of using the raw data itself, we account for the thermal inertia of the dam by using a {1,7,14}
(CB2) & {14,28,54} (CB3) days moving averages for the residual of temperature TB where the
yearly periodic pattern has been removed. Here, for each sensor, we selected the moving average
periods which which led to significant contribution for the displacement predictions among the set
{1,7,14,28,54}. Note that the one day moving average is equivalent to the raw data.

For LSTM models, we use the raw data of the reservoir water level and the temperature TB.
This is because the corrected pattern introduced by the truncation of the water level is detrimental
to the accuracy of the LSTMs prediction. Furthermore, LSTM models can take into account the
lagging effect of the temperature on the dam’s displacement automatically by using a lookback
period larger than one. Figure 1 presents the data that is employed as input in order to build the
BDLM and TAGI-LSTM models.

2000 2006 2012 2018

20
-10

0
10
20

C
B

2
[m

m
]

(a) CB2

2000 2006 2012 2018
−4

−2

0

2

4

C
B

3
[m

m
]

(b) CB3

2000 2006 2012 2018

180

200

220

240

W
at

er
le

ve
l[
m

]

(c) Water level

2000 2006 2012 2018
-10

0

10

M
A

-T
B

[o
C

] 7-day-MA 54-day-MA

(d) 7 & 54 days moving average / TB

Figure 1. CB2/3 displacements, water level, and examples of moving averages for the temperature TB.



3 METHODOLOGY

This section presents the theoretical foundations behind Bayesian dynamic linear models, the cou-
pling between tractable approximate Gaussian inference and LSTMs, as well as the Gaussian
mixture method for aggregating the predictions from multiple models.

3.1 Bayesian Dynamic Linear Models (BDLM)

Linear regression and neural networks are categorized as parametric methods because the relation-
ships within the model are controlled by the estimation of parameters. On the other hand, BDLMs
fall in the non-parametric category as the relationships within the model are learnt probabilistically
through constraints describing the transition of hidden state variables through time, as well as their
observability. For example in order to model the position xt in time t of an object in free-fall, rather
than trying to adjust the parameters of a function in order to fit through observations of the tuples
(time, position), i.e. a parametric approach, BDLM would model the dependency through time
h(xt |xt−1) using the classic kinematic equations for the hidden states x = [x, ẋ, ẍ]ᵀ; the position
x, speed ẋ and acceleration ẍ, and their observability by defining that only the position is observ-
able, i.e. yt = xt . From these constraints on the transition and observability, we can then employ
the Kalman filter (Kalman, 1960) (i.e., the Gaussian conditional equations) in order to infer the
posterior probability density function f (xt |y1,y2, · · · ,yt) of the hidden states given the data.

As stated in introduction, the main advantage of such an approach is that it allows updating
the model online as the data become available, without needing to re-learn the model parameters.
In practice, one can rely on a collection of predefined sub-components, each modelling a spe-
cific behaviour present in a time series, and which can be assembled together in order to create
powerful, yet simple, models. Another key aspect of BDLMs is their capacity to handle regime
switches over time, where models describing different regimes (e.g., a constant regime versus a
linearly changing one) can compete against each other and are ranked according to their prior
probability, the probability to switch from one regime to another, and the likelihood of each at
explaining the data. This regime switching algorithm is the backbone of anomaly detection in the
context of BDLMs (Nguyen & Goulet, 2018a; Khazaeli et al., 2021), whereas a switch between
regimes can be used as a proxy indicating the presence anomalies. The complete details regarding
the BDLM theory can be found in (Goulet, 2020), examples of its application to SHM datasets
can be found in (Nguyen et al., 2019; Goulet & Koo, 2018; Nguyen & Goulet, 2018b; Goulet,
2017; Nguyen & Goulet, 2017), and the OpenBDLM library (Gaudot et al., 2019) can be found
on GitHub (https://github.com/CivML-PolyMtl/OpenBDLM).

For this submission, the architecture of our model can be subdivided according to each time se-
ries, i.e., displacement, water level and temperature moving average. The selection of the model’s
components and their dependencies, were defined iteratively in order to remove any distinguish-
able pattern from the model residual term. The water level uses a local level to model the av-
erage value, a local trend in order to extract the long-term non-periodic tendency (≈ 5 years),
and an autoregressive process to capture the short-term (≈ 1 year) non-periodic changes in water
level. The temperature is modelled using a local level to model the average value, a Fourrier-
form periodic component to extract the long-term stationary pattern and an a white-noise pro-
cess to capture the non-periodic changes in temperature. The displacement time series CB2/3
are modelled using a local level to represent the average value, two state-based non-linear de-
pendencies on the water level (1) mean-centered values and (2) its long-term pattern, a linear
dependency over the non-periodic changes in temperature, and an autoregressive process in or-
der to capture the time-dependent model errors. The mathematical formulation for the matri-
ces defining the transition and observation models are presented in appendix A and the BDLM
code for reproducing the results presented in this paper has been made available on GitHub
(https://github.com/CivML-PolyMtl/OpenBDLM/tree/ICOLD_benchmark).

https://github.com/CivML-PolyMtl/OpenBDLM
https://github.com/CivML-PolyMtl/OpenBDLM/tree/ICOLD_benchmark


3.2 TAGI-Long Short-Term Memory neural networks (TAGI-LSTM)

LSTM is the classic neural network architecture for modelling time-series data. It models the de-
pendency between explanatory variables and target outputs using a cell state enabling to consider
long-term dependencies, layers of hidden variables defining the neural networks and gates (i.e.,
forget, input and output) enabling the combination of the information coming from the hidden and
cell states. A key advantage of LSTM over BDLM or HST methods is that it does not require
a specific architecture setup for defining the possible dependencies with respect to explanatory
variables, thus enabling it to be quickly applied to a large number of time series.

The parameters of LSTMs are typically learnt deterministically using gradient-based optimiza-
tion. The drawback of such an approach is that it disregards the epistemic uncertainty associated
with parameter estimation. In order to overcome this limitation, we rely on the tractable ap-
proximate Gaussian inference method (TAGI) (Goulet et al., 2021) in order to perform Bayesian
estimation for the LSTM network parameters. The specific network architecture and the hyperpa-
rameters employed in this submission are presented in appendix B.

Like other neural network architectures, LSTM networks are sensitive to the values employed
to initialize model parameters before their estimation. Given the ease to evaluate multiple models
having different initial model parameters, we choose to combine ten models in order to further
improve the prediction accuracy. The ensembling method to combine these ten models along with
the BDLM one is presented in the next subsection

3.3 Gaussian Mixture Ensembling

The ensembling method we use in this submission relies on the moment matching Gaussian mix-
ture of models (Runnalls, 2007). Here, we want to aggregate the BDLM and ten LSTM models
where each has a Gaussian output as characterized by their respective expected value µi and vari-
ance σ2

i , making them natively suited for the Gaussian mixture (GM). A GM combines several
Gaussian probability density functions according to the probability associated with each model.
In the case of the moment matching GM, we approximate the resulting mixture distribution by a
Gaussian random variable whose moments (µGM,σ

2
GM) matching those of the true mixture distribu-

tion and which can be computed using the relations

µGM = ∑
N
i=1 wiµi

σ2
GM = ∑

N
i=1 wi

[
σ2

i +(µi−µGM)
2
]
,

where for N models, the GM expected value is the weighted sum of the individual µi, and the GM
variance is the weighted sum of the variance σ2

i plus a term to account for the discrepancy between
each model’s expected value.

In a Bayesian context, the weights should be computed according to their posterior probability
wi = p(mi|D) as defined by

p(mi|D) =
p(D |mi) · p(mi)

∑i p(D |mi) · p(mi)
.

Here, we rely on the simplifying assumption that p(D |mi) = lnL (mi)
−1 is equal to the inverse

log-likelihood of each model measured between 2012-2013, whose values are reported in appendix
C. The prior probability p(mi) for the BDLM model is equal to 0.5, and to 0.05 for each of the
TAGI-LSTM models making their aggregated prior probability also equal to 0.5.

4 RESULTS

We divided the presentation of the results into three parts; first, we present the relative performance
of each individual model, i.e., BDLM vs TAGI-LSTM by training each of them on a subset of the



training data available, and then predicting the last three years of data available; second, we present
the forecasted data aggregating the prediction of one BDLM and 10 TAGI-LSTM models; third,
we present the model interpretation where we identify the sources and nature of the dependencies
between time series. Finally, we present how the regime switching capacity of BDLM is better at
detecting anomalies than threshold-based alarm triggers.

4.1 Validation

Figure 2 compares the predictions for the last three years of the training data available, obtained
for each models and for the Gaussian mixture of all models. These results show that both methods
offer a comparable performance with a slight edge for the BDLM method. In terms of computa-
tional time, both methods are comparable with a total training time in the order of an hour. Once
trained, both models can be use to predict with a computational time in the order of a minute.
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Figure 2. Comparative performance of BDLM, 10 instances of TAGI-LSTM, and the Gaussian mixture
from BDLM and 10 instances ({µ1,µ2, · · · ,µ10}) of TAGI-LSTM for both the CB2-3 sensors.

4.2 Forecasting

Figure 3 presents the forecasts for the period 2013–2018 obtained from the Gaussian mixture of
the BDLM and ten TAGI-LSTM models.

4.3 Model interpretation

The model interpretation is made using the BDLM model only, as LSTM networks offer little help
in understanding the nature of the dependencies between time series.

4.3.1 Dependencies and interaction between time-series
Figures 4 & 5 summarize the information that can be extracted from the BDLM model; (a)
presents the relative importance of each component measured by the relative variance of each
sub-component; (b) plot the non-linear relationships between the dam’s response and the the mean-
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Figure 3. Forecast for the Gaussian mixture made from BDLM forecasts and 10 instances of TAGI-LSTM
for both the CB2-3 sensors.

centered water level as well as its long-term pattern as depicted in (d) with corresponding colors;
(c) presents the periodic pattern extracted from the CB sensors that can include part of the temper-
ature and water level effects; (d) presents the mean-centered water level as well as the long-term
pattern extracted from it by BDLM; (e) presents the model residuals (xAR), i.e., the remaining part
of the observation not attributed to observation errors not explained by the other components.
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Figure 4. Graphs illustrating the interpretation of the CB2 dataset that can be made from the BDLM com-
ponents.

For the sensor CB2, we note in Figure 4a, the dominant relative importance of the mean-
centered water level through the non-linear dependency g(xWL) depicted in Figure 4b (WL-NL),



and secondly of the periodic pattern xKR depicted in Figure 4c (CB-KR). The third most important
contributor is the autoregressive component xAR depicted in Figure 4e (CB-AR), which represents
what cannot be explained by the model. Although the relative importance of other components
are less than the residual term, they still matter because we are interested in detecting anomalies
having small magnitudes. For example, an anomaly with a magnitude of 0.5mm would still have a
relative importance comparable to the one day moving average presented in Figure 4a (TB-MA1).
Note for instance that the relative importance of the long-term pattern (see 4d) within the water
level through the non-linear dependency g(xLTWL) depicted in Figure 4b (WL(LT)-NL) is key in order
to enable the detection of small anomalies as further detailed in Section 4.3.2.
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Figure 5. Graph illustrating the interpretation of the CB3 dataset that can be made from the BDLM com-
ponents.

For the sensor CB3, the contribution of the water level through the non-linear dependency
g(xWL) depicted in Figure 5b is even more dominant than in the case of CB2. One particularity for
CB3 is that the residual term corresponding to the autoregressive component in Figure 5d presents
a non-stationary pattern between February 2004 and 2007 as outlined in magenta. The presence of
such a pattern indicates that the current components considered in our model for CB3 are missing
a part of the dam’s behavior. The next section will further investigate this non-stationarity by
showing how using a regime-switching analysis would have been able to detect such anomalous
occurence in real time.

4.3.2 Anomaly detection using regime switching
As mentioned in §3.1, one key strength of BDLM, is its capacity to detect regime switches
(Nguyen & Goulet, 2018a; Khazaeli et al., 2021). We performed such an analysis on the CB2/3
datasets while a first normal regime is modelled with a constant baseline through time, and a
second abnormal regime is modelled with a constant-speed regime through time.

For the CB2 sensor, the black curve in Figure 6b presents the probability of anomaly identified
using the switching Kalman filter (SKF). This probability close to zero across the dataset indicates
that the dam’s behaviour is stationary. We further confirm this conclusion by adding to the original
data synthetic anomalies of magnitude am = {0.5,1,2}mm building up over a duration of ad =
4 years, as depicted in Figure 6a. The probability of anomaly identified by the SKF rises in
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Figure 6. Comparison of the regime switching approach with a threshold-based one for the purpose of
detecting anomalies while avoiding false alarms.

all three cases where synthetic anomalies are added, thus correctly indicating their presence. In
comparison, if we use an alarm-triggering threshold of 1 mm on the absolute difference between
the predicted and measured values for the validation set presented in Figure 2a, we would on
average, trigger more than 10 false alarms per year while no alarm should have been triggered.
Figure 6c presents the result of this exercice repeated for alarm-triggering thresholds ranging from
0.5 up to 6 mm. Note that these anomaly magnitudes are all smaller than the amplitude of the
residual term presented in Figure 4e. This shows that detecting anomalies based on the exceedence
of threshold values is prone to false alarms and offers a poor anomaly detectability in comparison
with the regime switching approach of Bayesian dynamic linear models. If one chooses a more
robust criterion involving multiple successive crossings, the false alarm rate will indeed drop;
Nevertheless, this strategy remains poorly suited for the detection of anomalies developing over
the span of several years, as parametric models (e.g. HST, LSTM, SVM, etc.) will need to be
retrained periodically in order to avoid drift, thus incorporating the changes due to the presence of
an anomaly in the updated models,.

Figure 7b presents the same exercise applied to the CB3 sensor. In this case, the SKF detects
a regime switch shortly before 2006 as indicated by the jump in the black curve. This regime
change can be confirmed by looking at the residual term presented in Figure 5d, where a non-
stationary pattern is visually observable between 2004 and 2007. As this pattern disappears after
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Figure 7. Regime switching analysis applied to the CB3 sensor for the raw data as well as additional syn-
thetic anomalies.



2007 while the probability of regime switch return to 0 after 2006, we speculate that events other
than those considered in our model have taken place during that period. We tested our capacity to
detect anomalies on CB3 by adding synthetic anomalies as depicted in Figure 7a, with magnitudes
am = {0.15,0.25,0.5}mm which are building up over a duration of ad = 4 years. Note that the
anomaly has been shifted after 2006 in order not to interfere with the actual anomaly present in the
data. We can see in 7b that synthetic anomalies with a magnitude low as 0.15mm are detectable
for this sensor.

5 DISCUSSION

The presence of a non-linear residual term for the sensor CB3 lead us to think that, in the context
of this benchmark, the long-term predictive capacity for that sensor will be limited. In order
to improve the model, it would be worth further investigating (1) the relationship between the
anomaly detected on the sensor CB3 and the seepage and piezometric levels measured, (2) the
possibility that the long-term effects of the water level on the sensors CB2/3 (see figure 4d) may
be related to creep/creep-relief effects (Bažant & Wu, 1974), and (3) following the results of
this forecasting competition, if other submissions have identified features explaining the dam’s
behavior that were not considered here, these could be included in our BDLM model in order to
further improve its forecasting accuracy and anomaly detectability.

Despite these limitations, as mentioned in Sections §3.1 & 4.3.2, the key aspect of our method
is to enable the detection of anomalies based upon the probability of regime switch rather than on
threshold crossing. This has enabled in §4.3.2, the detection of anomalies that are smaller than
the residual terms for the CB2 and CB3 sensors. This shows that the anomaly detectability of our
method can be decoupled from its long-term prediction capacity.

6 CONCLUSION

This paper presents the results of our submission to the ICOLD’s dam prediction benchmark. We
provide through our probabilistic ensembling method the explainability of BDLMs as well as the
accuracy and ease of use of Bayesian LSTM. Although the benchmark focusses on prediction
accuracy and threshold value definition for the purpose of anomaly detection, one should keep in
mind that this way of envisioning anomaly detection is only one approach among many others.
We showed in this paper that with our probabilistic regime switching method we expect to be able
to detect anomalies of 0.5 mm for CB2 and 0.15 mm for CB3, where both can develop over the
span of years.
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APPENDIX

A BDLM MODEL STRUCTURE

The BDLM components used for modeling the independent patterns for CB2/3 are local level
(LL), kernel regression (KR) and autoregressive (AR). The mean-centered raw water-level and its
long-term pattern (Figure 4d) are modeled using an AR and a local trend (LT) component respec-
tively. The two nonlinear patterns for CB2/3 that are nonlinearly dependent on these two time
series are each modeled using a state-regression (SR) component. The moving averages of the
temperature (TB) are modeled using AR components. The transition matrices for LL, LT, KR, and
AR components (Goulet, 2020, 2017) are as follow:

ALL
t = 1, ALT

t =

[
1 ∆t
0 1

]
, AKR

t =

[
0 k̃KR(t, tKR)

0n×1 In

]
, AAR

t = φ
AR, (1)

where n represents the number of control points for kernel regression and ∆t = 1day. The obser-
vation matrices for these components are given by

CLL
t = 1, CLT

t = [1 0] , CKR
t = [1 0n×1] , CAR

t = 1. (2)

The process noise Qt covariance matrices are

QLL
t = (σLL

w )2, QLT
t = (σLT

w )2

[
∆t4

4
∆t3

2
∆t3

2 ∆t2

]
, QKR

t =

[
(σKR

0 )2 0
0 (σKR

1 )2 · In

]
, QAR

t = (σAR
w )2, (3)

The SR component includes n = 20 hidden states for the kernel values, xSK = [xSK1 xSK2 . . .xSKn ]ᵀ; n+
1 hidden states for the regression coefficient that includes n hidden states of control-points, xφR

=

[xφR

1 xφR

2 . . .xφR

n ]ᵀ and xφR

0 which is the hidden state of the predicted regression coefficient; hidden

state for the nonlinear pattern for displacement, xS,D =
(

xφR

0 ·xS,T
)

where xS,T represents the covari-

ate for modeling the nonlinear dependency, and n product terms, xSKR = [xSKR,1 xSKR,2 . . .xSKR,n]ᵀ,
where, xSKR,i =

(
xSKi · x

φR

i

)
;∀i = 1 : n. The hidden states for the SR component can be grouped

together as

xSR = [(xSK)ᵀ (xφR

)ᵀ xφR

0 xS,D (xSKR)ᵀ]ᵀ.

The transition matrix for the SR component of size 3n+2 is formulated as

ASR
t =



0n 01×n 0 0 01×n
... In 0 0 01×n
... . . . 0 0 11×n
... . . . . . . 0 01×n

sym. . . . . . . . . . 0n


. (4)

The observation matrix CSR
t is given by

CSR
t =

[
0ᵀn×1 0ᵀn×1 0 1 0ᵀn×1

]
. (5)

No process noise is considered for the SR component and is given by QSR
t = 03n+2. Using equa-

tions 1 & 4, the global transition matrix At is obtained by arranging the transition matrices block
diagonally shown by

At = blockdiag

 CB2/3︷ ︸︸ ︷
[ALL

t , AKR
t , AAR

t ],

WL1︷ ︸︸ ︷
[ALT

t , ASR1
t ],

WL2︷ ︸︸ ︷
[AAR

t , ASR2
t ],

T-MA1︷ ︸︸ ︷
[AAR

t ],

T-MA7︷ ︸︸ ︷
[AAR

t ],

T-MA14︷ ︸︸ ︷
[AAR

t ] ,

T-MA28︷ ︸︸ ︷
[AAR

t ] ,

T-MA54︷ ︸︸ ︷
[AAR

t ]

, (6)



where WL1 and WL2 refers to the long term pattern and the mean-centered raw water level, and
the nonlinear dependencies are modeled using the SR1 and SR2 components. Using equations 2 &
5, the global observation matrix Ct is given by

Ct = blockdiag

 CB2/3︷ ︸︸ ︷
[CLL

t , CKR
t , CAR

t ],

WL1︷ ︸︸ ︷
[CLT

t , CSR1
t ],

WL2︷ ︸︸ ︷
[CAR

t , CSR2
t ],

T-MA1︷ ︸︸ ︷
[CAR

t ],

T-MA7︷ ︸︸ ︷
[CAR

t ],

T-MA14︷ ︸︸ ︷
[CAR

t ] ,

T-MA28︷ ︸︸ ︷
[CAR

t ] ,

T-MA54︷ ︸︸ ︷
[CAR

t ]

. (7)

The Qt and the Rt matrices are

Qt = blockdiag

 CB2/3︷ ︸︸ ︷
[QLL

t , QKR
t , QAR

t ],

WL1︷ ︸︸ ︷
[QLT

t , QSR1
t ],

WL2︷ ︸︸ ︷
[QAR

t , QSR2
t ],

T-MA1︷ ︸︸ ︷
[QAR

t ],

T-MA7︷ ︸︸ ︷
[QAR

t ],

T-MA14︷ ︸︸ ︷
[QAR

t ] ,

T-MA28︷ ︸︸ ︷
[QAR

t ] ,

T-MA54︷ ︸︸ ︷
[QAR

t ]

, (8)

Rt = blockdiag

[

CB2/3︷ ︸︸ ︷
(σv1)

2,

WL1︷ ︸︸ ︷
(σv2)

2,

WL2︷ ︸︸ ︷
(σv3)

2,

T-MA1︷ ︸︸ ︷
(σv4)

2,

T-MA7︷ ︸︸ ︷
(σv5)

2,

T-MA14︷ ︸︸ ︷
(σv6)

2,

T-MA28︷ ︸︸ ︷
(σv7)

2,

T-MA54︷ ︸︸ ︷
(σv8)

2]

, (9)

where σvi , ∀i = 1 : 8 refers to the standard deviation of the observation noise for each of the time
series.

B LSTM MODEL STRUCTURE

We use two separate models which have the same architecture, but do not share the parameters
to predict the displacements CB2 and CB3. The common network’s architecture consists of one
LSTM layer of 50 hidden units, and a dense layer with no activation function to combine the
output of the LSTM layer. In order to take into account the lagging effect that the temperature and
the reservoir’s level may have on the displacement, we use a sequence of length M of covariates as
inputs for the LSTM instead of using only the covariates at time t as

ht = g(ht−1,yt−L:t−1,xt−M+1:t),

where g(·) is the function implemented by the LSTM, h are the hidden states, y is the displacement
observation, x are covariates which are the reservoir’s level and temperature TB, and L is the
lookback period. During training when the data is missing, and during prediction when the data is
not available, we replace y by the network’s prediction, and x by 0. When using TAGI to perform
Bayesian estimation for the LSTM network parameters, it is required to define an observation
noise for each time series (Goulet et al., 2021). The standard deviation for this observation noise
is a hyper-parameter which needs to be learnt from data. We perform a grid-search to find the best
hyper-parameter values for each model as presented in Table 1. For each candidate value in the
grids, we train our models with early-stopping on a subset of training data from 2000 to end of
2009, and report the log-likelihood for the validation period from 2010 to end of 2012. The values
which maximize the log-likelihood of the validation set are chosen as the final hyper-parameter
values.

Table 1. LSTM hyper-parameters

Hyper-parameter CB2 CB3 Grid

Observation noise’s standard deviation 0.05 0.01 {0.01,0.05,0.1,0.15}
L 35 14 {14,35,56,70}
M 21 21 {7,21,35,49,70}



C LOG-LIKELIHOOD AND WEIGHT

Table 2. Log-likelihood measured between 2012-2013 and weight by each model

Model
CB2 CB3

Log-likelihood wi Log-likelihood wi

BDLM −63.89 0.506 −12.06 0.659
LSTM #1 −66.48 0.049 −46.96 0.017
LSTM #2 −66.53 0.049 −48.66 0.016
LSTM #3 −64.74 0.050 −11.64 0.068
LSTM #4 −64.98 0.050 −45.52 0.017
LSTM #5 −73.79 0.044 −35.36 0.022
LSTM #6 −65.14 0.050 −37.59 0.021
LSTM #7 −66.12 0.049 −24.71 0.032
LSTM #8 −62.4 0.052 −33.49 0.023
LSTM #9 −63.18 0.051 −28.68 0.028
LSTM #10 −62.51 0.052 −8.37 0.095

D MEAN ABSOLUTE ERROR (MAE)

Table 3. MAE for the validation period between 2010-2013

Model CB2 CB3

Mixture 1.366 0.253
BDLM 1.312 0.248
LSTM #1 1.574 0.490
LSTM #2 2.109 0.537
LSTM #3 1.910 0.486
LSTM #4 2.008 0.534
LSTM #5 1.945 0.610
LSTM #6 1.833 0.566
LSTM #7 1.836 0.393
LSTM #8 1.705 0.524
LSTM #9 1.796 0.452
LSTM #10 1.869 0.462
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