
ABSTRACT: Prediction of dam behavior plays an important role in the field of dam safety as it 
can be used to establish warning levels and detect dam failure. Recently, Machine Learning tech-
niques have been increasingly applied in this field due to their success in other areas. Our meth-
odology is based on such techniques to predict different measurements of and arch dam’s behavior 
and analyze the influence of external conditions. First, we performed an exploratory analysis and 
selected the most important variables for prediction. We measured the degree of similarity be-
tween external factors in the available years. Then, several models were trained for each target 
variable, and the optimal was selected, which were used to make short- and long-term predictions 
and determine warning levels. The results show that the short- and long-term moving averages of 
the water level are the most important variables regarding the prediction of the displacement and 
different groups of years in external conditions were also observed. SVM, NN, and BRT were the 
most accurate methods and their errors were used to determine the warning levels.  
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1 INTRODUCTION 

The practical problem to be solved in this research is denoted as Theme_A and its main objective 
is to predict the behavior of a double curvature arch dam. In our case, we chose to use Machine 
Learning techniques to configure models and perform the relevant analysis. 

The developers of Acis2in applied algorithms developed in other research projects to solve this 
practical problem, some of them implemented in our web application called SmartDam. We ana-
lyzed the external conditions affecting the dam and trained the Machine Learning models to make 
the short- and long-term predictions required. 

2 METHODOLOGY 

2.1 Exploratory analysis 
The research carried out in this workshop began with an exploratory analysis of the external fac-
tors and target variables. Their series and distributions were studied to understand their individual 
behavior, as well as the relationships between them. 

To perform the individual analysis of the variables, we have plotted their time series, density, 
and boxplots grouped by the available years in the data set. The latter two were used to observe 
their mean, dispersion, and range. We observed the difference between the behavior of the varia-
bles in each of the years through these graphs. The emphasis was placed on the study of water 
level, which, as discussed in the results section, has a crucial role in the prediction of the target 
variables.  

Correlation and scatterplot graphs were used to analyze the relationship between target varia-
bles and external factors. The former shows values between 0 and 1 indicating the degree of linear 
relationship between them, while the latter shows the type of relationship they hold (linear, non-
linear, etc.). 

2.2 Synthetic variables 
The next step in our methodology was to calculate synthetic variables related to the past of exter-
nal factors. These variables play an important role in the training process, since the effect of ex-
ternal factors does not immediately affect the dam, but rather there is a delayed effect. 

Three types of variables of different orders were calculated: moving averages (MM), aggre-
gates (AG), and variation ratio (VEL). 

Assuming we have a time series of variable 𝑋𝑋 ∈  (1 x 𝑚𝑚) , where 𝑡𝑡 is the instance at time 𝑡𝑡 of 
variable 𝑋𝑋, the synthetic variables are computed as follows:  

 

X_MM𝑡𝑡,𝑘𝑘 =  1
𝑘𝑘

 ∑ 𝑥𝑥𝑡𝑡−𝑖𝑖𝑘𝑘
𝑖𝑖 = 1 ;  (1) 

 

X_AG𝑡𝑡,𝑘𝑘 = ∑ 𝑥𝑥𝑡𝑡−𝑖𝑖𝑘𝑘
𝑖𝑖 = 1 ;  (2) 

 

X_VEL𝑡𝑡,𝑘𝑘 = 𝑥𝑥𝑡𝑡−𝑥𝑥𝑡𝑡−𝑘𝑘
𝑘𝑘

;  (3) 

where 𝑘𝑘 is the order of the synthetic variable and 𝑡𝑡 is the variable 𝑋𝑋 at time 𝑡𝑡. 

Short- and long-term synthetic variables of orders 7, 15, 30, 30, 60, 90, 180, and 365 were 
calculated. Among these variables, those of greatest importance in the prediction of the target 
variables were selected using our variable selection algorithm explained below. 



2.3 Variable Selection 
Variable selection arises due to the need to reduce the dimensions of the large data set generated 
after calculating the synthetic variables. Logically, all these variables are closely related to each 
other. Therefore, it is important to select only those that provide relevant information to the model 
to improve accuracy and reduce computational cost. 

The outline of the selection algorithm is as follows: 
1. Calculation of the degree of importance through Support Vector Machine 

(SVM). 
2. Sort variables by importance degree in descending order. 
3. Selection of certain numbers of variables: 10%, 20%, 30%, 50%, 60% and 80%. 
4. Execute an SVM for each quantity in Step 3. 
5. Selection of the variables that generate the most accurate model. 

First, a simple model was trained using SVM to calculate the degree of importance of each 
variable by measuring the area under the ROC curve. In our experience in other research, SVM 
takes less time to run and often gives the same results as other variable selection methods, such 
as ensembles of decision trees. 

The next question to be answered was how many variables should be used to optimize the 
accuracy of the final model. The most accurate selection methods, such as leave-one-out, may 
become computationally expensive if the dimensions of the training set are large. Therefore, in 
our algorithm, different percentages of variables are selected in descending order of importance, 
and a simple model is trained with SVM for each of these quantities. Finally, the quantity that 
gives the smallest error is selected. 

The variables resulting from this last step were used to train the final model to predict the target 
variable, where a search for the optimal hyperparameters and an estimation of the error was per-
formed through cross-validation. 

2.4 Similarity between the external conditions of the years 
To further study the external factors that influence the dam, an analysis of the similarity of these 
across the available years has been developed. The similarity measure used is summarized by 
calculating the Euclidean distance of the instances to the centroids of the Principal Components 
of the training years. 

The variables used as inputs in the algorithm are the important variables resulting from the 
previous section. Therefore, because each target variable has a different set of important variables, 
the results of this section may differ among the target variables, even though the original external 
conditions are the same for all of them. It is important to keep this in mind when analyzing the 
results written in the next chapter. 

The steps taken to calculate the similarity between the external conditions of each year are 
detailed below: 

1. Data scaling: All variables are converted to the same scale. 
2. Calculation of Principal Components (PC). 
3. The n PCs that explain 90% of the variability of the set were selected. Hence, we have an 

m x n data matrix, where m is the number of instances (or available dates) and n the 
number of principal components selected. 

𝑃𝑃𝑃𝑃𝑃𝑃 = �
𝑝𝑝𝑝𝑝11 ⋯ 𝑝𝑝𝑝𝑝1𝑛𝑛
⋮ ⋱ ⋮

𝑝𝑝𝑝𝑝𝑚𝑚1 ⋯ 𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚
� ;      (4) 

4. The centroids of each PC were calculated for each year. Then, we have a vector of coor-
dinates 𝐶𝐶 in the principal component space for each year available in the data set. 

𝐶𝐶𝑦𝑦 =  �𝑃𝑃𝑃𝑃𝑃𝑃������𝑚𝑚∈𝑦𝑦,1,𝑃𝑃𝑃𝑃𝑃𝑃������𝑚𝑚∈𝑦𝑦,2, . . . ,𝑃𝑃𝑃𝑃𝑃𝑃������𝑚𝑚∈𝑦𝑦,𝑛𝑛�;  (5) 
where 𝑃𝑃𝑃𝑃𝑃𝑃������𝑚𝑚∈𝑦𝑦,1 is the mean of the first principal component of the instances belonging 
to the year 𝑦𝑦 and 𝑦𝑦 ∈  [1, . . .  , 𝑘𝑘], being k the total number of available years. 



𝑃𝑃𝑃𝑃𝑃𝑃������𝑚𝑚∈𝑦𝑦,𝑗𝑗  =  1
𝑚𝑚𝑦𝑦

 ∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑗𝑗;𝑚𝑚𝑦𝑦
𝑖𝑖 = 1  (6) 

where j is the principal component taking values from 1 to n and 𝑚𝑚𝑦𝑦 is the number of 
instances in year 𝑦𝑦. 

5. Clusters of centroids were identified using the kmeans algorithm. Consequently, we ob-
tained the groups of the most similar centroids. 

6. The Euclidean distance from each point of the PCM matrix to each centroid of the training 
years (𝑦𝑦 ∈ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) was calculated, excluding the year to which the instance belongs ( 
𝑖𝑖 ∉ 𝑦𝑦). 

a. Euclidean distance from each point of the PCM matrix to the centroid of the year 
𝑦𝑦: 

𝑑𝑑𝐸𝐸𝑖𝑖�𝑃𝑃𝑃𝑃𝑃𝑃,𝐶𝐶𝑦𝑦� = �∑ �𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑗𝑗  −  𝑃𝑃𝑃𝑃𝑃𝑃������𝑚𝑚∈𝑦𝑦,𝑗𝑗�
2𝑛𝑛

𝑗𝑗 = 1;𝑖𝑖∉𝑦𝑦  ;  (7) 

where 𝑖𝑖 ∉ 𝑦𝑦 and j is the Principal Component (𝑗𝑗 ∈ [1, … ,𝑛𝑛]). 
Consequently, we have a vector 1 x 𝑘𝑘 (years) for each 𝑖𝑖 instance. That makes 

up the following matrix: 

𝐷𝐷𝐸𝐸 =  �
𝑑𝑑𝐸𝐸11 ⋯ 𝑑𝑑𝐸𝐸1𝑘𝑘
⋮ ⋱ ⋮

𝑑𝑑𝐸𝐸𝑚𝑚1 ⋯ 𝑑𝑑𝐸𝐸𝑚𝑚𝑚𝑚

� ;  (8) 

 
Finally, the variable measuring distance was computed as the average of the 

distances to all centroids. 

𝑑𝑑𝐸𝐸𝚤𝚤����(𝑃𝑃𝑃𝑃𝑃𝑃,𝐶𝐶) =  1
𝑘𝑘
∑ 𝑑𝑑𝐸𝐸𝑖𝑖(𝑃𝑃𝑃𝑃𝑃𝑃,𝐶𝐶𝑦𝑦)𝑘𝑘
𝑦𝑦=1 =  1

𝑘𝑘
∑ 𝐷𝐷𝐸𝐸𝑖𝑖𝑖𝑖
𝑘𝑘
𝑦𝑦=1 ;  (9) 

Thus, we have a variable 𝑑𝑑𝐸𝐸���(𝑃𝑃𝑃𝑃𝑃𝑃,𝐶𝐶) of dimension 1 x 𝑚𝑚 that measures the 
average distance from each point to the centroids of the training years. 

7. The average per year of the variable generated in the previous step was calculated. This 
variable is the average distance from each year to the rest of them (belonging to training). 

𝑑𝑑𝑑𝑑𝑦𝑦 =  1
𝑚𝑚𝑦𝑦

∑ 𝑑𝑑𝐸𝐸𝚤𝚤����(𝑃𝑃𝑃𝑃𝑃𝑃,𝐶𝐶);𝑚𝑚𝑦𝑦
𝑖𝑖=1,𝑖𝑖∈𝑦𝑦  (10) 

where  𝑚𝑚𝑦𝑦 is the number of years of 𝑦𝑦.  
The result is a vector of dimensions 1 x k:  𝑑𝑑𝑑𝑑 = (𝑑𝑑𝑑𝑑1, … ,𝑑𝑑𝑑𝑑𝑘𝑘), which indicates how 

far is each year to the resto of the training years. 
8. The minimum and maximum distance of the points of each year to the centroids of the 

training years were calculated as the minimum and maximum distance of each year to the 
centroids of the rest: 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑦𝑦,𝑘𝑘 ∈(1,…,𝑘𝑘)

𝑘𝑘 ≠ 𝑦𝑦

𝑑𝑑𝐸𝐸(𝑃𝑃𝑃𝑃𝑃𝑃𝑦𝑦,𝐶𝐶𝑘𝑘) ; 𝑚𝑚𝑚𝑚𝑚𝑚
𝑦𝑦,𝑘𝑘 ∈(1,…,𝑘𝑘)

𝑘𝑘 ≠ 𝑦𝑦

𝑑𝑑𝐸𝐸(𝑃𝑃𝑃𝑃𝑃𝑃𝑦𝑦,𝐶𝐶𝑘𝑘) ;   (11) 

where 𝑑𝑑𝐸𝐸(𝑃𝑃𝑃𝑃𝑃𝑃𝑦𝑦 ,𝐶𝐶𝑘𝑘) is the average distance of the PCM instances belonging to year 𝑦𝑦, 
and the centroid of year 𝑘𝑘. This step indicates the nearest and furthest training year in 
external conditions for each of the years. 

It should be noted that the distances from the points to the centroids are made considering only 
those of the years used during training. If the instance belongs to one of the training years, the 
centroid of that year is excluded from the calculation of the distances. For example, since 2003 
was used to train the model, the distances of the 2003 instances were calculated by measuring the 
Euclidean distances to the centroids of the training years except 2003. However, since 2016 was 
not used for training, its distances were calculated considering all centroids of the training years. 



2.5 Training and evaluation of models 
The model training stage consisted of the selection and training of models of different nature. 
Methods that are potentially accurate based on previous research experience were selected: 

• Boosted Regression Trees (BRT). 
• Random Forest (RF). 
• Support Vector Machine (SVM). 
• Neural Network (NN). 
• Generalized Linear Regression (LM). 
• Bayesian Neural Network (RRBB). 
• Hydrostatic-Season-Time (HST). 

Cross-validation was used to evaluate the models and estimate the optimal hyperparameters for 
each case. In this research, the folds match the years available in the dataset, which correspond to 
the dam cycles. The estimated error by averaging the error across folds (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐) is more robust 
than the RMSE over the validation set (year 2012) because it uses more dates. 

Therefore, the error measures used in this methodology are the RMSE of the CV (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐) and 
the RMSE of validation (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑣𝑣𝑎𝑎𝑎𝑎). The mathematical form of the RMSE is as follows: 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �∑ (𝑦𝑦�𝑖𝑖−𝑦𝑦𝑖𝑖)2

𝑚𝑚
𝑚𝑚
𝑖𝑖=1 ; (12) 

 
where m is the total number of records in the data set, 𝑦𝑦� the predicted values and 𝑦𝑦 the actual 
values. 

Considering that 𝑘𝑘 years are available, we have an RMSE for each 𝑘𝑘 years: 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐 =  1
𝑘𝑘
∑ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗𝑘𝑘
𝑗𝑗=1 ;  (13) 

 
The measure 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣 is simply the RMSE over the validation year, 2012 in this case. 
The optimal hyperparameters of each model were selected by searching the combination that 

gives the lowest error on average. For each combination, a model was created for each fold; then 
the average RMSE committed across the folds was calculated and the combination with the lowest 
error was selected. 

Accordingly, we obtained an estimated error for each of the seven trained models. The last step 
of this stage was to select the optimal model, which was the one with the lowest value of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐. 

2.6 Warning levels 
Once the optimal models were selected for each target variable, the warning levels were gener-
ated. These limits were determined on the estimated error of the prediction model for each com-
ponent and application segment. 

It is believed necessary to add to our prediction a component of the error committed by the 
model, since there is always a margin of error in the prediction. One of the possibilities considered 
was to add to the prediction value the average error of the model. However, it was decided to 
establish different confidence or sensitivity coefficients that multiply the standard deviations of 
the error in each case. Hence, different confidence bands are generated along the prediction span. 

The formula for the warning levels is as follows: 
𝑈𝑈± =  𝑦𝑦� ± 𝑐𝑐𝜎𝜎𝑒𝑒;  (14) 

where 𝑦𝑦� is the predicted value, 𝑐𝑐 is the chosen coefficient and 𝜎𝜎𝑒𝑒 the standard deviation of the 
error. 
 

 



 
Figure 1. Example of error density with the mean and coefficient points multiplied by the error variance. 

 
The coefficient selected to establish the warning level was 2, since this interval approximately 

holds 95% of the real values. 

3 RESULTS AND DISCUSSION 

This chapter presents and discusses the results obtained by applying the methods previously pre-
sented. The subdivisions of the Methodology section are similarly implemented in this chapter 
for ease of understanding and to present the results in an orderly way. 

3.1 Exploratory analysis 
An exploratory analysis of external factors was carried out to determine their behavior and rela-
tionship with the target variables. 

Figure 2 shows a cyclical behavior of the water level series. What is striking here is the pro-
nounced water level drops observed in 2003, 2006 and 2016. After the decrease in water level in 
2006, its average in the following years is higher due to higher minimum values. They progres-
sively decrease in average until the drop of 2016, which makes it an unusual year compared to 
the past. 

 
 

 
Figure 2. Water Level series over time 
  
 



 
Figure 3. Boxplots (a) and density plots (b) of Water Level by years. 

 
The plot (a) in Figure 3 shows what appears to be different behaviors according to the amplitude 

and the median value of the boxes: from 1995 to 2005, where the minimum values of water level 
are low; from 2007 to 2015, where values are higher; and the atypical periods such as 2006, 2016 
and 2017. The amplitudes of years from the first period mentioned are similar, although the values 
of the water level vary, especially those belonging to 2003, where a larger decrease is observed. 
This event makes the lower whisker longer and, accordingly, outliers appear. Year 2006 is signif-
icantly different from the immediately preceding years, as the amplitude of its box is smaller, 
implying that the water level lays within a narrower range. From that year on, there is an increase 
in the water level, where we find higher medians and values that progressively decrease. Un-
doubtedly, the most atypical period is 2016, where the lowest values are found. 

These remarks are also seen in the density graph (Figure 3, b), where several averages are 
observed due to cyclical rises and drops in the water level. Most of the years have similar means, 
except 1996, 2003,2006, 2016 and 2017, which have lower mean of minimum values than the 
others. The most unique year also in this type of graph is 2016, where a particularly steeper water 
level drawdown is observed. 

This behavior contrasts with the scarce temporal variation of temperatures, whose series show 
the usual cyclical behavior, and very similar means and medians over the years were observed. 

Regarding the pendulum series, some changes can be identified, which might be related to the 
previously mentioned water level drops. 

The variable most correlated with both pendulums is the water level, with values 0.62 
(CB_236_196) and 0.9 (CB3_195_161). Temperature, on the other hand, has a smaller linear 
relationship with both pendulums, finding its maximum at |-0.37| (CB_236_196). This coincides 
with the results of the analysis made in the previous paragraphs, where the variation of the pen-
dulum values seemed to be related to the water level. 

3.2 Synthetic variables 
Once the exploratory analysis was performed, the synthetic variables of the external factors were 
calculated to be used as inputs in the modeling training. 

 
 



 
Figure 4. Correlation plot of Water Level moving averages and pendulums. 

 
The correlation plot (Figure 4) shows that some of the moving averages of the water level are 

more correlated with both pendulums than the original variable. This increase in correlation 
helped achieve accurate models. 

Short-term moving averages (MM15, MM30, etc.) are most correlated with CB3_195_161, 
whereas long-term averages (MM180, MM90, etc.) are most correlated with CB_236_196. 

The following images show the series of these variables and their relationship to the pendulums 
(Figure 5 and Figure 6). 

 
 

 
Figure 5. Series of Water Level 15 and 180 order moving averages. 

 
 

 
Figure 6. Scatterplot of the relationship between pendulums and moving averages 15 and 180 of the reser-
voir level by years: (a) CB_236_196 and (b) CB3_195_161. 

 



Figure 6 shows a high degree of linear relationship between dam displacement of the dam and 
water level moving averages. Generally, points corresponding to the most current years, in gray, 
are concentrated in the upper right part of the graph, where the values of water level and displace-
ment are higher. Those belonging to 2000 and 2001, in dark red, have lower values, whereas the 
rest are more dispersed. Given the greater dispersion in the upper pendulum compared to the water 
level, it would appear that it has a greater dependence on other variables than the lower pendulum 
in which this dispersion is smaller. 

3.3 Most important variables 
As mentioned in the Methodology section, the selection of the most important variables for each 
pendulum is important to increase predictive power and reduce the dimensions of the data set. 

Logically, variables that have a high linear relationship will be important for the prediction of 
the target variable because many models tend to prefer this type of relationship for ease of mod-
eling. This is the case with our variable selection algorithm that employs an SVM for the calcu-
lation of the importance degree. 
 

 

 
Figure 7. Most important variables of the model and their degree of importance (%). 

 
The variables that top the list of importance for the CB_236_196 pendulum are the long-term 

synthetic variables (Figure 7). In contrast, in the case of CB3_195_161 the water-level short-term 
variables occupy this position. Temperatures are not as important, and time (T) and seasonality 
(S) are only ranked as important variables in the first pendulum.  

It seems rare that the displacement due to water level depends more on longer term synthetic 
variables. This could be related to the fact that the temperature-related part of the displacement is 
the main component in the physical sense, not in the model. Since most of the response is delayed 
between 90 and 180 days, the water level information integrated at that time frame makes the 
extreme value correspondences match the response better. 

3.4 Similarity between years 
The possible existence of groups depending on the water level emerged in the explanatory analy-
sis chapter. In this section, we go into detail on this issue, trying to group the different years 
according to their set of external factors. If these groups could be identified, the accuracy could 
be improved if the models were clustered by them. 

As explained in the Methodology chapter, a dimension reduction of the most important 



variables of both pendulums was performed by Principal Components Analysis. This is important 
since one may wonder why the values or groupings change from one pendulum to the other. The 
answer is that the calculations are made with different variables in each case (Figure 7). 

The clusters resulting from running the kmeans algorithm (Figure 8) seem to coincide with the 
clusters that could apparently be formed by looking at the water level graphs (Figure 3). The rarest 
external conditions are found in 2016 and 2017, which form cluster 3. 

The same groups are found for both pendulums, except for year 2002. It should be noted that 
the groups were made considering the centroids of 5 principal components, but to facilitate the 
explanation, they are represented in 2 dimensions. Hence, the actual cluster may not match what 
appears to be according to the graph (Figure 8).  

 
 

 
Figure 8. Centroids of the Principal Components of the years available in the dataset grouped by clusters 
generated through the kmeans algorithm. 

 
Figure 8 only provides an idea of the years that are most similar to each other. To go into detail, 

the Euclidean distance from each observation in the data set to the centroids of the training years 
is shown in Figure 9.  

Both series presented in Figure 9 are very similar. The period of time from 2007 to 2011, ap-
proximately, stands out due to its smaller range of values. The explanation for this fact is that the 
Water Level variable, which has great importance for the models of both pendulums, takes values 
within a less disperse range. For this reason, the distance is smaller since there are more points 
within this range of values (Figure 2). 

On the other hand, the largest distances are found in 2016 and 2017, which are the farthest 
periods from the rest of the centroids in the graph Figure 8. 

 
 

 
Figure 9. Series of the degree of representation, calculated as the Euclidean distance of the points of the 
different years to the centroids of the years used for training the models. 
 



Figure 10 shows that, on average, the external conditions of 2016 and 2017 are the most dif-
ferent compared to other years. This is due to their low water level values. They are followed by 
the years 2006, 2003, and 2014, for both devices. 

 
 

 
Figure 10. Mean Euclidean distance from the points of each year to the centroids of the training years. 

 
The results of this section indicate that the differences between the most important external 

conditions of each pendulum are related to low water levels and steep drawdowns. Given that 
2016 and 2017 are revealed to be odd and Machine Learning predictive models learn from data, 
the prediction error could be higher in these years. 

3.5 Models 
Among the results obtained when training the different models shown in Table 1 we found dif-
ferences depending on the type of device. The SVM model is the optimal model to predict the 
series of both pendulums; for the pore pressure measuring device, the best model is BRT because 
it has the lowest RMSECV values, while for leakage and joint opening, the most accurate is NN. 
 
Table 1. Results of the models for each device. RMSECV is the estimated error during the Cross Validation 
process. RMSEval is the error made on the validation set (year 2012). 

 Displacement 
(pendulums) Joint opening Pore pressure Leakage 

Device: CB2_236_196
  CB3_195_161 C4_C5 PZCB2 PZCB3 Seepage 

Model RMSE
CV 

RMSE
val 

RMSE
CV 

RMSE
val 

RMSE
CV 

RMSE
val 

RMSE
CV 

RMSE
val 

RMSE
CV 

RMSE
val 

RMSE
CV 

RMSE
val 

SVM 1.794 1.771 0.409 0.334 0.25 0.232 0.759 0.485 0.479 0.633 3.106 2.609 

BRT 2.334 2.562 0.554 0.395 0.277 0.215 0.56 0.609 0.349 0.586 3.143 3.231 

NN 4.165 7.136 0.893 0.441 0.189 0.107 1.102 0.907 0.926 2.114 3.054 2.821 

RF 2.747 3.103 0.62 0.641 0.333 0.312 0.763 1.43 0.479 0.514 3.235 3.092 

HST 2.869 4.099 0.594 0.622 0.305 0.353 1.029 1.526 0.724 1.291 3.113 2.632 

RRB
B 3.74 3.029 0.803 0.428 0.653 0.359 1.91 2.314 0.853 1.565 3.635 2.908 

LM 3.642 2.862 0.686 0.465 0.623 0.354 1.853 2.288 0.77 1.255 3.514 2.727 

 
In some cases, the validation error is lower with other models than those mentioned in the 

previous paragraph, as in the case of pore pressure and leakage devices. However, as explained 



in the Methodology section, the RMSECV is a more robust estimator of the error because it uses 
more years in its calculation.  

Figure 11 and Figure 12 show the results of the calibrated predictions during the CV and over 
the validation set of both pendulums. The series are significantly close to the actual values of the 
series. SVM seems to make a larger error in the high and low peaks of the years 2002, 2003, 2004 
and 2005 in the case of the CB3_195_161 pendulum (Figure 11). 

 The short- and long-term predictions of both pendulums are also shown in these figures. The 
series corresponding to the CB3_195_161 pendulum appears to have a decreasing trend from 
approximately 2008 onwards, probably due to the trend of the water level during those years. 
From 2014 onward, the trend seems to disappear. The predictions for 2017 are within a narrower 
range than usual due to the large drop in the 2016 water level discussed in the exploratory analysis 
section that causes the 2017 water level to have low values (Figure 2). The same trend is observed 
in the series of predictions of the CB2_236_196 pendulum. 

 
 

 
Figure 11. Series of real values of the CB3_195_161 pendulum and the predictions generated with the SVM 
model. The red dashed line separates the dates used to train the model and the validation set. 

 
 

 
Figure 12. Series of real values of the CB2_236_196 pendulum and the predictions generated with the SVM 
model. The red dashed line separates the dates used to train the model and the validation set. 
 

The outlier behavior of the water level in 2016 and 2017 makes it possible for the accuracy of 
the model to drop in those periods because that behavior has never been seen and the relationships 
between external conditions might not match those that the model has identified and configured. 

3.6 Warning Levels 
This section presents the results of the warning levels obtained by applying the formula explained 
in the Methodology chapter for each device. 

 
Table 2. Table with the relevant information for the calculation of the warning levels of each target variable. 
Pto = c*σe. 

 Displacement (pendulums) Joint 
opening Pore pressure Leakage 



Device: CB2_236_196 CB3_195_161 C4_C5 PZCB2 PZCB3 Seepage 

c σe Pto σe Pto σe Pto σe Pto σe Pto σe Pto 
1.5 

1.851 

2.777 

0.454 

0.681 

0.198 

0.296 

0.582 

0.873 

0.357 

0.535 

3.096 

4.645 
2 3.703 0.909 0.395 1.163 0.713 6.193 
3 5.554 1.363 0.593 1.745 1.070 9.289 
4 7.405 1.817 0.790 2.327 1.427 12.385 

 
The coefficient selected to determine the warning levels is 2, so the band of each instance will 

be its predicted value plus 2 times the standard deviation of the error. 
 
 

 
Figure 13. Warning levels of the pendulum CB3_195_161 calculated with c = 2. 

 
 

 
Figure 14. Warning levels of the pendulum CB2_236_196 calculated with c = 2. 
 

4 CONCLUSSIONS 

We have presented a methodology for the prediction of dam behavior through the selection of the 
most important variables and the optimal choice among models of different natures. Warning 
levels have been established based on the error of the best model. Moreover, an exploratory anal-
ysis of the external factors has been carried out, and we have gone into detail about the relation-
ships between them and the pendulums in order to group the years according to the similarity 
between their external conditions. 

The exploratory analysis showed different behaviors in the water level that are directly related 
to the behavior of the pendulum series. These changes in the series are linked to the water level 
drops observed in some years, such as 2003, 2006, and 20016. 



On the other hand, the external factor that has the highest correlation with the pendulum series 
is the water level, more specifically the short-term moving averages in the case of pendulum 
CB3_195_161 and the long-term ones in the case of pendulum CB2_236_196. These synthetic 
variables are also the most important variables in both cases regarding predictive capacity, re-
spectively. 

Through our methodology we also identified groups of years based on the centroids and the 
distance series, or degree of similarity, of the external conditions of each year. The observed 
groups are similar to those intuited in the exploratory analysis: group 1, formed by 2000, 2001, 
2003, 2003, 2004, 2006, 2006, 2012, 2013, 2013, 2014, 2015; group 2, consisting of 2005 and 
2007 through 2011; and group 3, 2016 and 2017. On average, the most atypical years are 2016 
and 2017, due to the steep drop in water level in 2016. This raises the possibility of an increase 
in our model error in those years. 

The results on the optimal model for predicting dam behavior depend on the type of measure-
ment involved. For dam displacement, the best model was SVM, for leakage and joint opening it 
was NN, while BRT gave the best results for pore pressure. The short- and long-term predictions 
of these models have a decreasing trend due to the observed decreasing trend of water level. 

In summary, significantly accurate models have been built through the selection of the most 
important variables and the application of different algorithms, where the water level is highly 
correlated with the behavior of the dam. 
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