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ABSTRACT: Prediction of dam behavior plays an important role in the field of dam safety as it
can be used to establish warning levels and detect dam failure. Recently, Machine Learning tech-
niques have been increasingly applied in this field due to their success in other areas. Our meth-
odology is based on such techniques to predict different measurements of and arch dam’s behavior
and analyze the influence of external conditions. First, we performed an exploratory analysis and
selected the most important variables for prediction. We measured the degree of similarity be-
tween external factors in the available years. Then, several models were trained for each target
variable, and the optimal was selected, which were used to make short- and long-term predictions
and determine warning levels. The results show that the short- and long-term moving averages of
the water level are the most important variables regarding the prediction of the displacement and
different groups of years in external conditions were also observed. SVM, NN, and BRT were the
most accurate methods and their errors were used to determine the warning levels.



1 INTRODUCTION

The practical problem to be solved in this research is denoted as Theme A and its main objective
is to predict the behavior of a double curvature arch dam. In our case, we chose to use Machine
Learning techniques to configure models and perform the relevant analysis.

The developers of Acis2in applied algorithms developed in other research projects to solve this
practical problem, some of them implemented in our web application called SmartDam. We ana-
lyzed the external conditions affecting the dam and trained the Machine Learning models to make
the short- and long-term predictions required.

2 METHODOLOGY

2.1 Exploratory analysis

The research carried out in this workshop began with an exploratory analysis of the external fac-
tors and target variables. Their series and distributions were studied to understand their individual
behavior, as well as the relationships between them.

To perform the individual analysis of the variables, we have plotted their time series, density,
and boxplots grouped by the available years in the data set. The latter two were used to observe
their mean, dispersion, and range. We observed the difference between the behavior of the varia-
bles in each of the years through these graphs. The emphasis was placed on the study of water
level, which, as discussed in the results section, has a crucial role in the prediction of the target
variables.

Correlation and scatterplot graphs were used to analyze the relationship between target varia-
bles and external factors. The former shows values between 0 and 1 indicating the degree of linear
relationship between them, while the latter shows the type of relationship they hold (linear, non-
linear, etc.).

2.2 Synthetic variables

The next step in our methodology was to calculate synthetic variables related to the past of exter-
nal factors. These variables play an important role in the training process, since the effect of ex-
ternal factors does not immediately affect the dam, but rather there is a delayed effect.

Three types of variables of different orders were calculated: moving averages (MM), aggre-
gates (AQ), and variation ratio (VEL).

Assuming we have a time series of variable X € (1 xm) , where t is the instance at time t of
variable X, the synthetic variables are computed as follows:

1
XMMeg = © Z¥o 1 X (1)
X AGes = Xf o %e—i; )
X_VEL; ) = "f‘kﬁ (3)

where k is the order of the synthetic variable and ¢ is the variable X at time .

Short- and long-term synthetic variables of orders 7, 15, 30, 30, 60, 90, 180, and 365 were
calculated. Among these variables, those of greatest importance in the prediction of the target
variables were selected using our variable selection algorithm explained below.



2.3 Variable Selection

Variable selection arises due to the need to reduce the dimensions of the large data set generated
after calculating the synthetic variables. Logically, all these variables are closely related to each
other. Therefore, it is important to select only those that provide relevant information to the model
to improve accuracy and reduce computational cost.
The outline of the selection algorithm is as follows:

1. Calculation of the degree of importance through Support Vector Machine
(SVM).
Sort variables by importance degree in descending order.
Selection of certain numbers of variables: 10%, 20%, 30%, 50%, 60% and 80%.
Execute an SVM for each quantity in Step 3.
Selection of the variables that generate the most accurate model.

R

First, a simple model was trained using SVM to calculate the degree of importance of each
variable by measuring the area under the ROC curve. In our experience in other research, SVM
takes less time to run and often gives the same results as other variable selection methods, such
as ensembles of decision trees.

The next question to be answered was how many variables should be used to optimize the
accuracy of the final model. The most accurate selection methods, such as leave-one-out, may
become computationally expensive if the dimensions of the training set are large. Therefore, in
our algorithm, different percentages of variables are selected in descending order of importance,
and a simple model is trained with SVM for each of these quantities. Finally, the quantity that
gives the smallest error is selected.

The variables resulting from this last step were used to train the final model to predict the target
variable, where a search for the optimal hyperparameters and an estimation of the error was per-
formed through cross-validation.

2.4 Similarity between the external conditions of the years

To further study the external factors that influence the dam, an analysis of the similarity of these
across the available years has been developed. The similarity measure used is summarized by
calculating the Euclidean distance of the instances to the centroids of the Principal Components
of the training years.

The variables used as inputs in the algorithm are the important variables resulting from the
previous section. Therefore, because each target variable has a different set of important variables,
the results of this section may differ among the target variables, even though the original external
conditions are the same for all of them. It is important to keep this in mind when analyzing the
results written in the next chapter.

The steps taken to calculate the similarity between the external conditions of each year are
detailed below:

1. Data scaling: All variables are converted to the same scale.

2. Calculation of Principal Components (PC).

3. The n PCs that explain 90% of the variability of the set were selected. Hence, we have an
m x n data matrix, where m is the number of instances (or available dates) and »n the
number of principal components selected.
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4. The centroids of each PC were calculated for each year. Then, we have a vector of coor-
dinates C in the principal component space for each year available in the data set.
Cy, = (PCMypey 1, PCMpey 2, -, PCMimey 1 ); (5)

where PCM ¢, 1 is the mean of the first principal component of the instances belonging
tothe year y and y € [1,... , k], being k the total number of available years.
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where j is the principal component taking values from 1 to n and m,, is the number of
instances in year y.

5. Clusters of centroids were identified using the kmeans algorithm. Consequently, we ob-
tained the groups of the most similar centroids.

6. The Euclidean distance from each point of the PCM matrix to each centroid of the training
years (y € training) was calculated, excluding the year to which the instance belongs (
I &y).

a. Euclidean distance from each point of the PCM matrix to the centroid of the year
y:
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where i € y and is the Principal Component (j € [1, ..., n]).
Consequently, we have a vector 1 x k (years) for each i instance. That makes
up the following matrix:
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Finally, the variable measuring distance was computed as the average of the
distances to all centroids.
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Thus, we have a variable d;(PCM, C) of dimension 1 x m that measures the

average distance from each point to the centroids of the training years.
7. The average per year of the variable generated in the previous step was calculated. This
variable is the average distance from each year to the rest of them (belonging to training).
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where m,, is the number of years of y.
The result is a vector of dimensions / x k: dE = (dEj, ..., dE}), which indicates how
far is each year to the resto of the training years.
8. The minimum and maximum distance of the points of each year to the centroids of the
training years were calculated as the minimum and maximum distance of each year to the
centroids of the rest:
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where d(PCM,, Cy) is the average distance of the PCM instances belonging to year y,

and the centroid of year k. This step indicates the nearest and furthest training year in
external conditions for each of the years.

It should be noted that the distances from the points to the centroids are made considering only
those of the years used during training. If the instance belongs to one of the training years, the
centroid of that year is excluded from the calculation of the distances. For example, since 2003
was used to train the model, the distances of the 2003 instances were calculated by measuring the
Euclidean distances to the centroids of the training years except 2003. However, since 2016 was
not used for training, its distances were calculated considering all centroids of the training years.



2.5 Training and evaluation of models

The model training stage consisted of the selection and training of models of different nature.
Methods that are potentially accurate based on previous research experience were selected:

e Boosted Regression Trees (BRT).

e Random Forest (RF).

e Support Vector Machine (SVM).

e Neural Network (NN).

e Generalized Linear Regression (LM).
e Bayesian Neural Network (RRBB).

e Hydrostatic-Season-Time (HST).

Cross-validation was used to evaluate the models and estimate the optimal hyperparameters for
each case. In this research, the folds match the years available in the dataset, which correspond to
the dam cycles. The estimated error by averaging the error across folds (RMSE,) is more robust
than the RMSE over the validation set (year 2012) because it uses more dates.

Therefore, the error measures used in this methodology are the RMSE of the CV (RMSE,,) and
the RMSE of validation (RMSE,;). The mathematical form of the RMSE is as follows:

Zm @i-y)? .
i=1 m 4

RMSE = (12)

where m is the total number of records in the data set, ¥ the predicted values and y the actual
values.
Considering that k years are available, we have an RMSFE for each k years:

RMSE,, = —-Y¥_, RMSE;; (13)
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The measure RMSE,,; is simply the RMSE over the validation year, 2012 in this case.

The optimal hyperparameters of each model were selected by searching the combination that
gives the lowest error on average. For each combination, a model was created for each fold; then
the average RMSE committed across the folds was calculated and the combination with the lowest
error was selected.

Accordingly, we obtained an estimated error for each of the seven trained models. The last step
of this stage was to select the optimal model, which was the one with the lowest value of RMSE,,.

2.6 Warning levels

Once the optimal models were selected for each target variable, the warning levels were gener-
ated. These limits were determined on the estimated error of the prediction model for each com-
ponent and application segment.

It is believed necessary to add to our prediction a component of the error committed by the
model, since there is always a margin of error in the prediction. One of the possibilities considered
was to add to the prediction value the average error of the model. However, it was decided to
establish different confidence or sensitivity coefficients that multiply the standard deviations of
the error in each case. Hence, different confidence bands are generated along the prediction span.

The formula for the warning levels is as follows:

Uy = § £ co,; (14)

where ¥ is the predicted value, c is the chosen coefficient and o, the standard deviation of the
error.
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Figure 1. Example of error density with the mean and coefficient points multiplied by the error variance.

The coefficient selected to establish the warning level was 2, since this interval approximately
holds 95% of the real values.

3 RESULTS AND DISCUSSION

This chapter presents and discusses the results obtained by applying the methods previously pre-
sented. The subdivisions of the Methodology section are similarly implemented in this chapter
for ease of understanding and to present the results in an orderly way.

3.1 Exploratory analysis

An exploratory analysis of external factors was carried out to determine their behavior and rela-
tionship with the target variables.

Figure 2 shows a cyclical behavior of the water level series. What is striking here is the pro-
nounced water level drops observed in 2003, 2006 and 2016. After the decrease in water level in
2006, its average in the following years is higher due to higher minimum values. They progres-
sively decrease in average until the drop of 2016, which makes it an unusual year compared to
the past.
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Figure 2. Water Level series over time
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Figure 3. Boxplots (a) and density plots (b) of Water Level by years.

The plot (a) in Figure 3 shows what appears to be different behaviors according to the amplitude
and the median value of the boxes: from 1995 to 2005, where the minimum values of water level
are low; from 2007 to 2015, where values are higher; and the atypical periods such as 2006, 2016
and 2017. The amplitudes of years from the first period mentioned are similar, although the values
of the water level vary, especially those belonging to 2003, where a larger decrease is observed.
This event makes the lower whisker longer and, accordingly, outliers appear. Year 2006 is signif-
icantly different from the immediately preceding years, as the amplitude of its box is smaller,
implying that the water level lays within a narrower range. From that year on, there is an increase
in the water level, where we find higher medians and values that progressively decrease. Un-
doubtedly, the most atypical period is 2016, where the lowest values are found.

These remarks are also seen in the density graph (Figure 3, b), where several averages are
observed due to cyclical rises and drops in the water level. Most of the years have similar means,
except 1996, 2003,2006, 2016 and 2017, which have lower mean of minimum values than the
others. The most unique year also in this type of graph is 2016, where a particularly steeper water
level drawdown is observed.

This behavior contrasts with the scarce temporal variation of temperatures, whose series show
the usual cyclical behavior, and very similar means and medians over the years were observed.

Regarding the pendulum series, some changes can be identified, which might be related to the
previously mentioned water level drops.

The variable most correlated with both pendulums is the water level, with values 0.62
(CB_236_196) and 0.9 (CB3_195 161). Temperature, on the other hand, has a smaller linear
relationship with both pendulums, finding its maximum at |-0.37| (CB_236_196). This coincides
with the results of the analysis made in the previous paragraphs, where the variation of the pen-
dulum values seemed to be related to the water level.

3.2 Synthetic variables

Once the exploratory analysis was performed, the synthetic variables of the external factors were
calculated to be used as inputs in the modeling training.
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Figure 4. Correlation plot of Water Level moving averages and pendulums.

The correlation plot (Figure 4) shows that some of the moving averages of the water level are
more correlated with both pendulums than the original variable. This increase in correlation

helped achieve accurate models.

Short-term moving averages (MM15, MM30, etc.) are most correlated with CB3 195 161,
whereas long-term averages (MM180, MM90, etc.) are most correlated with CB_236_196.
The following images show the series of these variables and their relationship to the pendulums

(Figure 5 and Figure 6).
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Figure 5. Series of Water Level 15 and 180 order moving averages.
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Figure 6. Scatterplot of the relationship between pendulums and moving averages 15 and 180 of the reser-

voir level by years: (a) CB_236 196 and (b) CB3 195 161.



Figure 6 shows a high degree of linear relationship between dam displacement of the dam and
water level moving averages. Generally, points corresponding to the most current years, in gray,
are concentrated in the upper right part of the graph, where the values of water level and displace-
ment are higher. Those belonging to 2000 and 2001, in dark red, have lower values, whereas the
rest are more dispersed. Given the greater dispersion in the upper pendulum compared to the water
level, it would appear that it has a greater dependence on other variables than the lower pendulum
in which this dispersion is smaller.

3.3 Most important variables

As mentioned in the Methodology section, the selection of the most important variables for each
pendulum is important to increase predictive power and reduce the dimensions of the data set.

Logically, variables that have a high linear relationship will be important for the prediction of
the target variable because many models tend to prefer this type of relationship for ease of mod-
eling. This is the case with our variable selection algorithm that employs an SVM for the calcu-
lation of the importance degree.
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Figure 7. Most important variables of the model and their degree of importance (%).

The variables that top the list of importance for the CB_236 196 pendulum are the long-term
synthetic variables (Figure 7). In contrast, in the case of CB3 195 161 the water-level short-term
variables occupy this position. Temperatures are not as important, and time (T) and seasonality
(S) are only ranked as important variables in the first pendulum.

It seems rare that the displacement due to water level depends more on longer term synthetic
variables. This could be related to the fact that the temperature-related part of the displacement is
the main component in the physical sense, not in the model. Since most of the response is delayed
between 90 and 180 days, the water level information integrated at that time frame makes the
extreme value correspondences match the response better.

3.4 Similarity between years

The possible existence of groups depending on the water level emerged in the explanatory analy-
sis chapter. In this section, we go into detail on this issue, trying to group the different years
according to their set of external factors. If these groups could be identified, the accuracy could
be improved if the models were clustered by them.

As explained in the Methodology chapter, a dimension reduction of the most important



variables of both pendulums was performed by Principal Components Analysis. This is important
since one may wonder why the values or groupings change from one pendulum to the other. The
answer is that the calculations are made with different variables in each case (Figure 7).

The clusters resulting from running the kmeans algorithm (Figure 8) seem to coincide with the
clusters that could apparently be formed by looking at the water level graphs (Figure 3). The rarest
external conditions are found in 2016 and 2017, which form cluster 3.

The same groups are found for both pendulums, except for year 2002. It should be noted that
the groups were made considering the centroids of 5 principal components, but to facilitate the
explanation, they are represented in 2 dimensions. Hence, the actual cluster may not match what
appears to be according to the graph (Figure 8).
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Figure 8. Centroids of the Principal Components of the years available in the dataset grouped by clusters
generated through the kmeans algorithm.

Figure 8 only provides an idea of the years that are most similar to each other. To go into detail,
the Euclidean distance from each observation in the data set to the centroids of the training years
is shown in Figure 9.

Both series presented in Figure 9 are very similar. The period of time from 2007 to 2011, ap-
proximately, stands out due to its smaller range of values. The explanation for this fact is that the
Water Level variable, which has great importance for the models of both pendulums, takes values
within a less disperse range. For this reason, the distance is smaller since there are more points
within this range of values (Figure 2).

On the other hand, the largest distances are found in 2016 and 2017, which are the farthest
periods from the rest of the centroids in the graph Figure 8.
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Figure 9. Series of the degree of representation, calculated as the Euclidean distance of the points of the
different years to the centroids of the years used for training the models.



Figure 10 shows that, on average, the external conditions of 2016 and 2017 are the most dif-
ferent compared to other years. This is due to their low water level values. They are followed by
the years 2006, 2003, and 2014, for both devices.
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Figure 10. Mean Euclidean distance from the points of each year to the centroids of the training years.

The results of this section indicate that the differences between the most important external
conditions of each pendulum are related to low water levels and steep drawdowns. Given that
2016 and 2017 are revealed to be odd and Machine Learning predictive models learn from data,
the prediction error could be higher in these years.

3.5 Models

Among the results obtained when training the different models shown in Table 1 we found dif-
ferences depending on the type of device. The SVM model is the optimal model to predict the
series of both pendulums; for the pore pressure measuring device, the best model is BRT because
it has the lowest RMSEcy values, while for leakage and joint opening, the most accurate is NN.

Table 1. Results of the models for each device. RMSEcy is the estimated error during the Cross Validation
process. RMSE,,; is the error made on the validation set (year 2012).

Displacement

(pendulums) Joint opening Pore pressure Leakage
Device: CB2.236_196 B3 195 161 C4 C5 PZCB2 PZCB3 Seepage
Model RMSE RMSE RMSE RMSE RMSE RMSE RMSE RMSE RMSE RMSE RMSE RMSE
[0\% val [0\% val CV val CV val [0\ val [0\ val

SVM  1.794 1771 0409 0334 0.25 0.232  0.759 0485 0479 0.633 3.106 2.609
BRT 2334 2562 0554 0395 0277 0215 0.56 0.609 0349 0586 3.143 3.231
NN 4165 7.136 0.893 0441 0.189 0.107 1.102 0.907 0926 2.114 3.054 2.821
RF 2.747  3.103  0.62 0.641 0333 0312 0.763 143 0479 0514 3235  3.092
HST 2869 4.099 0594 0.622 0305 0353 1.029 1526 0.724 1291 3.113  2.632
ERB 3.74 3.029 0.803 0428 0.653 0359 1091 2314 0.853 1.565 3.635 2908
LM 3.642 2862 0686 0465 0.623 0354 1.853 2288 0.77 1.255 3514 2727

In some cases, the validation error is lower with other models than those mentioned in the
previous paragraph, as in the case of pore pressure and leakage devices. However, as explained



in the Methodology section, the RMSEcy is a more robust estimator of the error because it uses
more years in its calculation.

Figure 11 and Figure 12 show the results of the calibrated predictions during the CV and over
the validation set of both pendulums. The series are significantly close to the actual values of the
series. SVM seems to make a larger error in the high and low peaks of the years 2002, 2003, 2004
and 2005 in the case of the CB3 195 161 pendulum (Figure 11).

The short- and long-term predictions of both pendulums are also shown in these figures. The
series corresponding to the CB3 195 161 pendulum appears to have a decreasing trend from
approximately 2008 onwards, probably due to the trend of the water level during those years.
From 2014 onward, the trend seems to disappear. The predictions for 2017 are within a narrower
range than usual due to the large drop in the 2016 water level discussed in the exploratory analysis
section that causes the 2017 water level to have low values (Figure 2). The same trend is observed
in the series of predictions of the CB2 236 196 pendulum.
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Figure 11. Series of real values of the CB3_ 195 161 pendulum and the predictions generated with the SVM
model. The red dashed line separates the dates used to train the model and the validation set.
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Figure 12. Series of real values of the CB2_236 196 pendulum and the predictions generated with the SVM
model. The red dashed line separates the dates used to train the model and the validation set.
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The outlier behavior of the water level in 2016 and 2017 makes it possible for the accuracy of
the model to drop in those periods because that behavior has never been seen and the relationships
between external conditions might not match those that the model has identified and configured.

3.6 Warning Levels
This section presents the results of the warning levels obtained by applying the formula explained
in the Methodology chapter for each device.

Table 2. Table with the relevant information for the calculation of the warning levels of each target variable.
Pto = c*ce.

Joint

Displacement (pendulums) opening

Pore pressure Leakage



Device: CB2_236_196 CB3_195 161 C4 C5 PZCB2 PZCB3 Seepage
c Ge Pto Ge Pto Ge Pto Ge Pto Ge Pto Ge Pto
1.5 2.777 0.681 0.296 0.873 0.535 4.645
3.703 0.909 0.395 1.163 0.713 6.193
1.851 5554 0.454 1363 0.198 0.593 0.582 1745 0.357 LO70 3.096 9.289
7.405 1.817 0.790 2.327 1.427 12.385

The coefficient selected to determine the warning levels is 2, so the band of each instance will
be its predicted value plus 2 times the standard deviation of the error.
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Figure 13. Warning levels of the pendulum CB3 195 161 calculated with ¢ = 2.
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Figure 14. Warning levels of the pendulum CB2 236 196 calculated with ¢ = 2.

4 CONCLUSSIONS

We have presented a methodology for the prediction of dam behavior through the selection of the
most important variables and the optimal choice among models of different natures. Warning
levels have been established based on the error of the best model. Moreover, an exploratory anal-
ysis of the external factors has been carried out, and we have gone into detail about the relation-
ships between them and the pendulums in order to group the years according to the similarity
between their external conditions.

The exploratory analysis showed different behaviors in the water level that are directly related
to the behavior of the pendulum series. These changes in the series are linked to the water level

drops observed in some years, such as 2003, 2006, and 20016.



On the other hand, the external factor that has the highest correlation with the pendulum series
is the water level, more specifically the short-term moving averages in the case of pendulum
CB3 195 161 and the long-term ones in the case of pendulum CB2 236 196. These synthetic
variables are also the most important variables in both cases regarding predictive capacity, re-
spectively.

Through our methodology we also identified groups of years based on the centroids and the
distance series, or degree of similarity, of the external conditions of each year. The observed
groups are similar to those intuited in the exploratory analysis: group 1, formed by 2000, 2001,
2003, 2003, 2004, 2006, 2006, 2012, 2013, 2013, 2014, 2015; group 2, consisting of 2005 and
2007 through 2011; and group 3, 2016 and 2017. On average, the most atypical years are 2016
and 2017, due to the steep drop in water level in 2016. This raises the possibility of an increase
in our model error in those years.

The results on the optimal model for predicting dam behavior depend on the type of measure-
ment involved. For dam displacement, the best model was SVM, for leakage and joint opening it
was NN, while BRT gave the best results for pore pressure. The short- and long-term predictions
of these models have a decreasing trend due to the observed decreasing trend of water level.

In summary, significantly accurate models have been built through the selection of the most
important variables and the application of different algorithms, where the water level is highly
correlated with the behavior of the dam.
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